meet fraiboto, an ai based chatbot encapsulating the collective intelligence of aec organizations

fraiboto_banner_03

The machine learning bot that improves knowledge sharing and use of existing data within AEC companies

Background

The idea of this project came around as a conversation about how advanced parametric engineering tools will never be able to replace the power of senior staff with decades of experience in designing structures. They have the ability to quickly answer technical questions using their engineering judgement and provide accurate estimations despite low-res input. On the other hand, a major asset of this knowledge source might be lost in case these senior engineers one day decide to leave the company. Fraiboto aims to address this issue by encapsulating this intelligence in an AI system.

Result

Fraiboto (pronounced Frei Botto) is an AI based chatbot that encapsulates the collective intelligence of entire engineering organizations. She’s able to give you design recommendations, help you to find people and projects in your organization, technical translations and even give you 3D snapshots of your projects models.

Fraiboto is completely open source. You can find the source code here.

Context

Fraiboto was developed from scratch during 24 intense hours at the AEC Hackathon February 2020, in Copenhagen, Denmark.  The team consisted of:

  • Sara Almstedt, Ramboll
  • Felipe Bandeira, Ramboll
  • Oyvind Fossum, Ramboll
  • Emil Poulsen, CORE studio | Thornton Tomasetti
  • Puria Safari Hesari, Rambol
  • Milovann Yanatchkov, Continuum

The project won the Hackathon’s “Bettering the people in the AEC industry” award. See my last post for proof.

Demo

5 verticals are shown in the video below:

  • The Senior – Answers technical questions
  • Project data query – shows drawings, 3D models, analytical models from existing projects
  • The web of skills/resources – Directs you to an authority on the topic
  • The technical translation – Does technical translation that Google Translate doesn’t know
  • The assistant – Helps with registering expenses or booking flights

Tech stack

  • ASP.NET Core backend
  • MS Bot service and Luis.ai for natural language parsing
  • Speckles API for 3d model view
  • MS Bot UI in iframe for the front end (not in this repo)

Roadmap

  • General cleanup. Replace hardcoded hacks and csvs with air tables.
  • Improve current services by providing more learn data
  • Add additional engineering modules
  • Automated BIM model scraping
  • Add learning pipeline from intranet
  • UI touchups – integrated 2D/3D viewer

Running the app

  • Clone the repo
  • Get a luis.ai account and put the API keys in the appSettings.json. Note that you’ll have to create appropriate intents, entities and data sets on your own to train your bot. See further instructions in the repo.
  • Run the dotnet core server.
  • Use The Bot Framework Emulator to interact with the bot by providing the localhost port your backend is running.

Caveats

As mentioned, everything in the repo was developed during the hackathon, so be aware the state of the code is rough. We used the MS Bot “Core” example as a starting point, which will become apparent after further inspection of the source. The bot’s training set is limited, which means that the conversation intents may be incorrectly mapped by Fraiboto.

Cred for the bot’s name goes to Frei Otto

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s